

City of Salina Raw Water Supply Study

Planning Session with Salina City Commission

March 2, 2009 2:30 PM

SALINA

Introductions

- HDR
 - Donald Lindeman,
 Project Manager
- Wilson & Company
 - Jason Schlickbernd, Asst. Project Manager
- Layne Christensen
 - Luca DeAngelis Hydrogeologist

Agenda for Today

- Raw Water Supply Study Scope
- Work completed to since last update:

- Conservation Plan
- Water Reuse
- Alternatives
 - New Sources of Supply
 - Alternatives Process
 - Preliminary Screening
 - Alternatives Evaluation Criteria
- What's Next

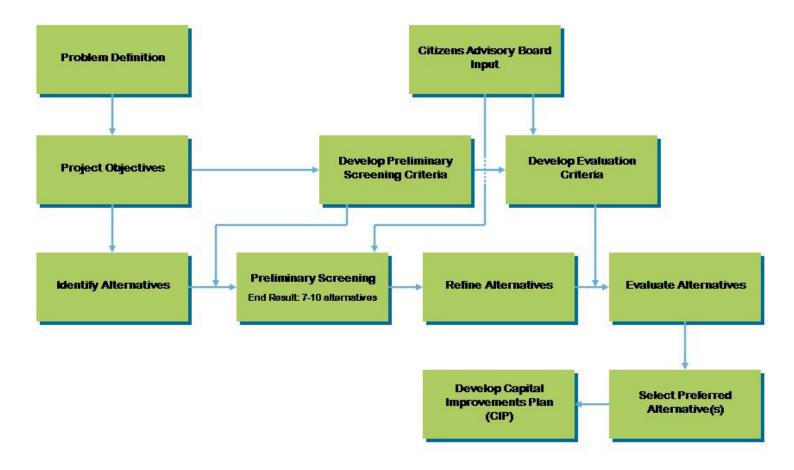
Summary of Raw Water Supply Study

Scope of Study

- Water Demand Projections July, 2008
- Water Rights/Regulatory Review Sept/Oct 2008

- Existing Sources of Supply Oct/Nov, 2008
- Conservation Plan Nov/Dec, 2008
 - Present at a later date
- Alternatives Evaluation Jan/Feb/Mar, 2009
 - Identify potential new sources of supply
 - Alternatives evaluation
 - Pull selected options together (new sources, optimization of existing sources, conservation, reuse) into Capital Improvements Plan (CIP)
- Reuse Evaluation Nov/Dec, 2008
 - Regulatory requirements, flows, applications, costs

Alternatives Process



Alternatives Process

Systematic way to evaluate potential alternatives

Problem Definition/Project Objectives

Problem Definition

- Decreased reliability of raw water supplies during drought conditions
- Contamination issues with existing wells
- Need water supplies to meet growing demands

Project Objectives

- Increase the reliability of raw water supplies, especially during drought conditions
- Support economic growth and development
- Optimize existing infrastructure where possible
- Minimize risks to the City and its customers
- Cost effective solutions "most bang for the buck"

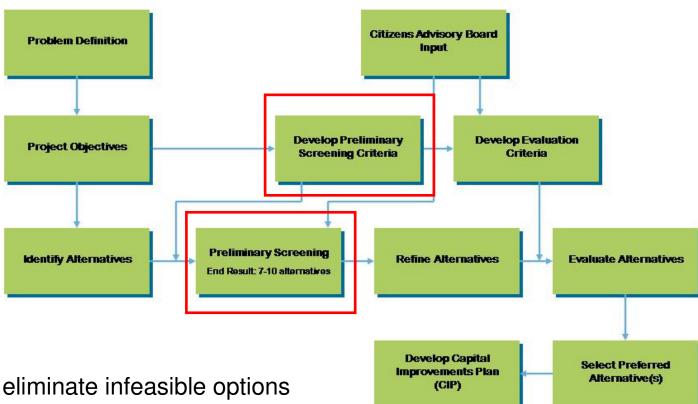
Identification of Alternatives

- Improvements at Downtown Wellfield
- Improvements at South Wellfield
- 3) Seasonal surface water right
- 4) Kanopolis Reservoir *
- 5) Milford Reservoir *
- 6) Wilson Reservoir *
- 7) Saline River *
- 8) Confluence of Smoky Hill and Solomon Rivers *
- 9) Dakota Aquifer *
- 10) Construct a reservoir *
- 11) Acquire existing water rights *
- 12) Water Assurance District *

- 13) Aquifer recharge
 - Infiltration ponds
 - Direct recharge wells
 - Infiltration through oxbow
- 14) Water reuse
 - All irrigation + industrial sites
 - All irrigation sites
 - City-owned irrigation sites

* New Sources of Supply

Preliminary Screening of Alternatives



Preliminary Screening of Alternatives

- Objective: eliminate infeasible options
- Goal: 7-10 alternatives to move forward
- Simple pass/fail analysis

Preliminary Screening Criteria

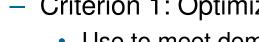
Related to the project objectives

- Five general criteria:
 - Optimizes existing resources
 - Includes water rights, raw water infrastructure, treatment infrastructure
 - Increases reliability during drought
 - Includes increased reliability of existing sources and new sources that are independent of existing sources
 - Minimizes implementation risk
 - Includes effectiveness of alternative, public issues, historical use for water supply, permitting, approval, and development processes
 - Expandable for future demands
 - Includes availability for future water rights, physically expandable
 - Cost effective
 - Most bang for the buck
 - Capital costs only does not include O&M costs
 - 30% contingencies for unknown work
 - 20% factor for engineering, legal, etc

Preliminary Screening – Downtown Wellfield

- Improvements at Downtown Wellfield
 - Criterion 1: Optimizes existing resources PASS
 - Re-drill 5 wells, treat contamination, upsize air strippers to maximize existing water right of <u>15.2 MGD</u>
 - Criterion 2: Increases reliability during drought PASS/FAIL
 - Same drought-prone source historically used by City
 - Partially increases reliability if all wells can be used
 - Reliability can be further increased with passive/direct recharge
 - Criterion 3: Minimizes implementation risk PASS
 - Minimal risk since it has historically been used by City
 - Criterion 4: Expandable for future demands FAIL
 - Area closed to further appropriations cannot drill more wells
 - Criterion 5: Cost effective
 - Total cost \$6.4 million
 - Cost/gallon \$2.13/gallon (based on 3 MGD)

Preliminary Screening - South Wellfield


- Improvements at South Wellfield
 - Criterion 1: Optimizes existing resources PASS
 - Re-drill 2 wells to maximize existing water right of 3.7 MGD
 - Construct treatment plant to reduce iron/manganese/hardness
 - Criterion 2: Increases reliability during drought PASS
 - Considered an additional source to increase reliability
 - Well spacing increases reliability compared to Downtown Wellfield and groundwater not over-developed
 - Criterion 3: Minimizes implementation risk PASS
 - Conventional treatment capable of treating iron, manganese, and hardness with minimal permitting risk
 - Criterion 4: Expandable for future demands PASS
 - May be able to obtain additional water rights or acquire existing water rights
 - Criterion 5: Cost effective
 - Total cost \$15.2 million
 - Cost/gallon \$4.10/gallon (based on 3.7 MGD)

Preliminary Screening - Seasonal Water Right

Seasonal Water Right on Smoky Hill River

Criterion 1: Optimizes existing resources - PASS

Use to meet demands during October - June

 Optimizes wellfields and existing Smoky Hill River water right so that they can be used during times of peak usage

Need a new intake, pump station, and treatment for taste & odor

Criterion 2: Increases reliability during drought — PASS/FAIL

Preserves aquifer levels and surface water right for peak usage

May be times when cannot use seasonal right due to low flows

Criterion 3: Minimizes implementation risk - PASS

Smoky Hill River already used as a source

Criterion 4: Expandable for future demands - PASS

May be able to obtain additional seasonal water rights

Criterion 5: Cost effective

Total cost - \$5.1 million

Cost/gallon - \$0.51/gallon (based on 10 MGD)

Kanopolis Reservoir

- Approximately 27 miles southwest of Salina
- Owned and operated by the USACE to regulate flows in the Smoky Hill River
- Current yield projection 6.5 MGD in 2047
 - During a 50-year drought
- Current allocations 1.096 MGD to Post Rock
- Current applications 23.525 MGD
 - Reservoir potentially overcommitted
- Would require 27+ miles of pipeline to convey
- Investigation of 2' pool raise to raise yield
 - Not considered a near-term possibility

Preliminary Screening – Kanopolis Reservoir

- Kanopolis Reservoir
 - Criterion 1: Optimizes existing resources FAIL
 - Need an intake, pump station, and 27+ miles of pipeline
 - Criterion 2: Increases reliability during drought PASS/FAIL
 - New source for City; decreased Smoky Hill River flows correspond with low levels in Kanopolis Reservoir
 - Criterion 3: Minimizes implementation risk FAIL
 - Risk in ability to obtain storage in the reservoir over-committed
 - Criterion 4: Expandable for future demands FAIL
 - Safe yield of reservoir will decrease in future due to sedimentation
 - Criterion 5: Cost effective
 - Total cost \$14.0 million
 - Cost/gallon \$7.02/gallon (based on 2 MGD)
 - \$113,000 in 2009 to purchase storage (annual cost)

Milford Reservoir

Approximately 45 miles east of Salina

- Owned and operated by the USACE to regulate flows in the Republican River
- Better water quality than supplies near Salina
- Current allocations
 - 38 MGD in use (Westar Energy, Kansas River WAD #1)
 - 75 MGD currently not opened for allocations
- Different river basin increases reliability
- Would likely require inter-basin transfer
 - Long permitting process with DWR
 - May encounter resistance from eastern water users
- Would require 45+ miles of pipeline to convey

Preliminary Screening - Milford Reservoir

- Milford Reservoir
 - Criterion 1: Optimizes existing resources FAIL
 - Need an intake, pump stations, and 45+ miles of pipeline
 - Criterion 2: Increases reliability during drought PASS
 - New source for City; different river-basin than current sources
 - Criterion 3: Minimizes implementation risk FAIL
 - Risk in ability to obtain storage in the reservoir 75 MGD is allocated for future water supply but has not been opened up
 - Risk in potential inter-basin transfer requirements
 - Criterion 4: Expandable for future demands PASS
 - 75 MGD of storage not currently opened up
 - Criterion 5: Cost effective
 - Total cost \$30.8 million
 - Cost/gallon \$6.16/gallon (based on 5 MGD)
 - \$113,000 in 2009 to purchase storage (annual cost)

Wilson Reservoir

Approximately 55 miles west of Salina

- Operated by the USACE to regulate flows in the Saline River
- Water quality high in salinity
 - Would require reverse osmosis treatment
- Currently no storage allocated for supply
 - Has never been used for water supply
 - KWO investigating buying storage
- Would require 55+ miles of pipeline to convey

Preliminary Screening – Wilson Reservoir

- Wilson Reservoir
 - Criterion 1: Optimizes existing resources FAIL
 - Need an intake, pump stations, and 55+ miles of pipeline, reverse osmosis treatment facility, disposal of concentrate
 - Criterion 2: Increases reliability during drought PASS/FAIL
 - New source for City; decreased Smoky Hill River flows may correspond with low levels in Wilson Reservoir – same basin
 - Criterion 3: Minimizes implementation risk FAIL
 - Has not been used as a water supply source
 - Risk in ability to obtain storage in the reservoir no allocation for water supply
 - Risk in development and permitting of RO facility
 - Criterion 4: Expandable for future demands PASS/FAIL
 - Possibly depends if KWO purchases storage and how much they purchase
 - Criterion 5: Cost effective
 - Total cost \$70.5 million
 - Cost/gallon \$14.10/gallon (based on 5 MGD)
 - \$113,000 in 2009 to purchase storage (annual cost)

Saline River

- Approximately 5 miles northeast of Salina
- Under-developed in terms of water rights
 - Opportunity for seniority
 - Availability for expansion

- Poor water quality high salinity
 - TDS is 1,150 ppm vs 576 ppm at Smoky Hill River
 - Requires desalination treatment process (reverse osmosis)
- Would likely use river bank filtration wells
 - Not limited to time of year for withdrawal
 - Provides some pre-treatment of the water
 - Series of vertical wells OR horizontal collector well

Preliminary Screening - Saline River

- Saline River
 - Criterion 1: Optimizes existing resources FAIL
 - Need wells to withdraw, reverse osmosis treatment facility, disposal of concentrate, pump station, 5+ miles of pipeline
 - Criterion 2: Increases reliability during drought PASS/FAIL
 - New source for City; decreased Smoky Hill River flows may correspond with low flows in Saline River – same basin
 - Criterion 3: Minimizes implementation risk FAIL
 - Has not been used as a water supply source (municipal)
 - Risk in development and permitting of RO facility
 - Criterion 4: Expandable for future demands PASS
 - Not over-developed with water rights
 - Criterion 5: Cost effective
 - Total cost \$41.3 million
 - Cost/gallon \$8.25/gallon (based on 5 MGD)

Confluence of Smoky Hill and Solomon Rivers

- Approximately 13 miles northeast of Salina
- Under-developed in terms of water rights
 - Opportunity for seniority
 - Availability for expansion
- More reliable flow conditions than Smoky Hill River near Salina
- Poor water quality high salinity
 - TDS is 1,150 ppm vs 576 ppm at Smoky Hill River
 - Requires desalination treatment process (reverse osmosis)
- Would likely use river bank filtration wells

Preliminary Screening - Confluence

- Confluence of Smoky Hill River and Solomon River
 - Criterion 1: Optimizes existing resources FAIL
 - Need wells to withdraw, reverse osmosis treatment facility, disposal of concentrate, pump station, 13+ miles of pipeline
 - Criterion 2: Increases reliability during drought PASS
 - New source for City; more flow in river near confluence during past droughts due to Saline River and Solomon River
 - Criterion 3: Minimizes implementation risk PASS/FAIL
 - Currently used for municipal water supply
 - Risk in development and permitting of RO facility
 - Criterion 4: Expandable for future demands PASS
 - Not over-developed with water rights
 - Criterion 5: Cost effective
 - Total cost \$46.4 million
 - Cost/gallon \$9.28/gallon (based on 5 MGD)

Dakota Aquifer

Used for many uses in central and SW Kansas

- Lower unit forms valley walls of Smoky Hill River near Salina
 - Low yield wells
 - City of Gypsum wells produce 45-50 gpm
- Upper unit to the north and west of Salina
 - Well yields from 50 to 300 gpm
- Variable water quality
 - Depending on location can be high in salinity
 - Salinity increases to the west
 - Varies from 250 ppm to 2,000 ppm

Preliminary Screening – Dakota Aquifer

- Dakota Aquifer
 - Criterion 1: Optimizes existing resources FAIL
 - Low yield wells need many of them (24 for 5 MGD @ 150 gpm per well)
 - Need wells to withdraw, pump stations, 30+ miles of pipeline (due to well spacing requirements – depends where in Dakota Aquifer)
 - Criterion 2: Increases reliability during drought PASS
 - New source for City that is independent of drought-impacted sources
 - Criterion 3: Minimizes implementation risk FAIL
 - Aquifer highly variable in yield and water quality
 - Criterion 4: Expandable for future demands PASS
 - Not over-developed with water rights
 - Criterion 5: Cost effective
 - Total cost \$31.2 million
 - Cost/gallon \$6.24/gallon (based on 5 MGD)

Reservoir Construction

- Reservoir for water supply, recreation, flood control
- Considerations:

- Need water right for diversion
- Extensive permitting with DWR
- Land purchase for dam, area covered by water, area for spillway, and mitigation
- Possible road and utility relocations
- Environmental impacts and possible mitigation
- Development of recreation facilities
- Sedimentation of reservoir and reduction in inflows
- Intake, pump station, and pipeline
- Time for design, permitting, construction
 - Still need additional sources in the interim

Preliminary Screening - Const. Reservoir

- Construct a Water Supply Reservoir
 - Criterion 1: Optimizes existing resources FAIL
 - Assume can treat at existing WTP if surface water not in use
 - Need reservoir (25,000 AF), intake, pump station, 5+ miles of pipeline (depends on site)
 - Criterion 2: Increases reliability during drought PASS
 - New source for City; inflows into reservoir likely decreased during drought
 - Criterion 3: Minimizes implementation risk FAIL
 - Risk in permitting and development of reservoir long lead time
 - Risk with dam breaks/flooding and loss of life/property
 - Criterion 4: Expandable for future demands PASS/FAIL
 - Design for planning horizon
 - Yield of reservoir will decrease in future due to sedimentation
 - Criterion 5: Cost effective
 - Total cost \$162 million
 - Cost/gallon \$32.48/gallon (based on 5 MGD)
 - · Does not include costs for relocating roads and utilities, etc

Acquisition of Existing Water Rights

- Includes surface water and groundwater rights
- Common method in western Kansas

- Considerations for purchasing water rights
 - Find willing sellers
 - Find water rights that are senior to Salina
 - Find large water right volumes close to existing infrastructure
- Considerations for implementing
 - Wells would likely need to be replaced
 - Change in Point of Diversion from DWR (can only move a well at most ½ mile from current location)
 - Change in Use Made of Water and Change in the Place of Use for conversion to municipal and use in Salina
 - Permitted volume and rate likely reduced upon conversion

Preliminary Screening – Existing Water Rights

- Acquire Existing Water Rights
 - Criterion 1: Optimizes existing resources FAIL
 - If acquire groundwater rights need to re-drill wells
 - If acquire surface water rights need to construct intake
 - Criterion 2: Increases reliability during drought PASS/FAIL
 - Likely the same sources as existing sources
 - Water rights acquired would be spread out over aquifer and not as impacted by over-pumping
 - Criterion 3: Minimizes implementation risk PASS
 - Normal permitting with DWR as long as don't move well over ½ mile
 - Willing sellers minimize risk
 - Criterion 4: Expandable for future demands PASS
 - Could obtain additional water rights
 - Criterion 5: Cost effective
 - Total cost \$20.2 million
 - Cost/gallon \$4.05/gallon (based on 5 MGD)
 - Costs depend on how many water rights are acquired and location

Water Assurance District Development

- Municipal and industrial users along a river join together to purchase storage in upstream reservoir for drought periods
 - "Insurance policy" for water availability when streamflows are low
- USACE/KWO operate reservoir to release the stored flow to the Water Assurance District users
- Currently 3 water assurance districts in Kansas
- Salina owns water rights on the Smoky Hill River
 - No storage allocated for water assurance districts in Kanopolis Reservoir
- Currently irrigation users are not included in district
 - KWO is considering allowing them to be part of the district

Preliminary Screening – Water Assurance District

Form a Water Assurance District (Kanopolis Reservoir)

- Criterion 1: Optimizes existing resources PASS
 - Use Smoky Hill River for conveyance and use existing intake

- Criterion 2: Increases reliability during drought PASS/FAIL
 - Would be a water supply source that is ensured to be available during droughts; Kanopolis may see low levels during a drought
 - Does not guarantee water purchased will make it to Salina (loss to aquifer)
- Criterion 3: Minimizes implementation risk FAIL
 - No storage in Kanopolis Reservoir allocated for Water Assurance District
 - Significant development time
- Criterion 4: Expandable for future demands FAIL
 - Yield of Kanopolis Reservoir will only decrease in the future due to sedimentation
- Criterion 5: Cost effective
 - · Costs vary by Water Assurance District, member, and reservoir
 - Must pay for storage even if don't use it that year
 - · Only use the storage when needed

Aquifer Recharge Summary

- Maintain elevated water levels within the aquifer so that water is available when it is needed
- Active recharge: infiltrate or directly inject water into the aquifer to increase water levels
 - Requires a water source
 - Recharge features must be upgradient of the wellfield to have impact
 - Active aquifer recharge has limited benefit due to stream/aquifer interaction

Active Recharge Methods	Advantages	Disadvantages
Infiltration Ponds	Relatively simpleDo not need to treat source water	 Prone to siltation Water deficit due to evaporation No existing features near wellfield Space intensive
Infiltration through Oxbow	Good location to benefit wellfield	 Limited infiltration through channel bottom Flow in channel may be depleted during high pumping times
Direct Recharge Wells	 Likely do not need to treat water source if using bank storage diversion wells Do not need a lot of space Can place wells to directly benefit wellfield 	Expensive Permitting with DWR to for Underground Injection Control Class V Permit

Preliminary Screening – Aquifer Recharge

- Aquifer Recharge
 - Criterion 1: Optimizes existing resources PASS/FAIL
 - Temporarily increases aquifer levels to optimize existing wellfields
 - Need bank storage diversion wells or off-season water right as source
 - May not optimize wellfield during drought years if can't withdraw water
 - Criterion 2: Increases reliability during drought PASS/FAIL
 - Increases aquifer levels for wellfields during a drought
 - During drought years may not be able to withdraw water for recharge
 - Criterion 3: Minimizes implementation risk FAIL
 - Unknown if recharge will be effective due to alluvium/river interaction
 - Risk with permitting with DWR
 - Criterion 4: Expandable for future demands FAIL
 - The aguifer can only be recharged so much
 - Wellfields can only be optimized so much
 - Criterion 5: Cost effective
 - Total cost \$7.8 million
 - Cost/gallon \$1.56/gallon (based on 5 MGD)

Water Reuse Summary

- Many sites use private wells/water rights for irrigation
- Infrastructure needs:
 - Filtration (per KDHE requirements to irrigate athletic fields)
 - Additional disinfection (likely needed to increase inactivation of pathogens for irrigating athletic fields)
 - Storage and pumping facilities
 - Pipeline
- Alternative 1 serve all irrigation and industrial sites
- Alternative 2 serve all irrigation sites
- Alternative 3 serve City-owned irrigation sites
 - Bill Burke Park, Salina Municipal Golf Course, E. Crawford Rec.
 - Excludes Soccer Complex

Alternative	Average Day Demand	Maximum Day Demand	Approximate Storage Requirement	Approximate Pipeline Length	Estimated Pipe Size	
			•	•	(in.)	
	(MGD)	(MGD)	(Gallons)	(miles)	, ,	
1	2.12	5.00	1,000,000	12.8	16, 8	
2	1.70	3.67	600,000	6.5	16	
3	0.64	1.90	200,000	3.4	10	

Preliminary Screening – Water Reuse

Water Reuse – 3 alternatives
 All irrigation + industrial sites

- All irrigation sites
- City-owned irrigation sites (excluding Soccer Complex)

- Criterion 1: Optimizes existing resources PASS
 - Utilizes existing wastewater treatment infrastructure
 - Puts wastewater to beneficial use rather than discharging to river
 - Need additional treatment and pipeline
- Criterion 2: Increases reliability during drought FAIL
 - Does not save much from the municipal system (0.2 MGD 0.6 MGD on average)
- Criterion 3: Minimizes implementation risk PASS/FAIL
 - Risk with public acceptance and effect of water quality on vegetation;
 however it has been done in Kansas successfully
- Criterion 4: Expandable for future demands PASS
 - Up to 3 MGD for consistent supply of reclaimed water
 - Minimum flow into wastewater treatment plant will increase as the City grows

Preliminary Screening – Water Reuse (con't)

- Water Reuse 3 alternatives (continued)
 - All irrigation + industrial sites
 - All irrigation sites
 - City-owned irrigation sites (excluding Soccer Complex)
 - Criterion 5: Cost effective
 - All irrigation + industrial sites
 - Total cost \$16.6 million
 - Cost per gallon \$3.33/gallon
 - 0.61 MGD saved from municipal water supply system
 - All irrigation sites
 - Total cost \$11.7 million
 - Cost per gallon \$3.20/gallon
 - 0.19 MGD saved from municipal water supply system
 - City-owned irrigation sites (excluding Soccer Complex)
 - Total cost \$6.1 million
 - Cost per gallon \$3.19/gallon
 - 0.13 MGD saved from municipal water supply system

Preliminary Screening Information

Summary of Costs

Alternative	Capacity (MGD)	Total Construction Cost	Other Costs	Total Project Costs	Cost/ga
Seasonal Water Right	10.00	\$4,235,000	\$847,000	\$5,082,000	\$0.51
Aquifer Recharge - Recharge Wells	5.00	\$6,512,000	\$1,302,000	\$7,814,000	\$1.56
Downtown Wellfield	3.00	\$5,317,000	\$1,063,000	\$6,380,000	\$2.13
Water Reuse City-owned irrigation	1.90	\$5,051,000	\$1,010,000	\$6,061,000	\$3.19
Water Reuse all irrigation	3.67	\$9,790,000	\$1,958,000	\$11,748,000	\$3.20
Water Reuse all industrial + irrigation	5.00	\$13,863,000	\$2,773,000	\$16,636,000	\$3.33
Acquire Existing Water Rights	5.00	\$16,857,000	\$3,371,000	\$20,228,000	\$4.05
South Wellfield	3.70	\$12,648,000	\$2,530,000	\$15,178,000	\$4.10
Milford Reservoir	5.00	\$25,649,000	\$5,130,000	\$30,779,000	\$6.16
Dakota Aquifer	5.00	\$26,008,000	\$5,202,000	\$31,210,000	\$6.24
Kanopolis Reservor	2.00	\$11,701,000	\$2,340,000	\$14,041,000	\$7.02
Saline River	5.00	\$34,381,000	\$6,876,000	\$41,257,000	\$8.25
Confluence	5.00	\$38,662,000	\$7,732,000	\$46,394,000	\$9.28
Wilson Reservoir	5.00	\$58,738,500	\$11,748,000	\$70,486,500	\$14.10
Reservoir Constuction	5.00	\$135,350,800	\$27,070,000	\$162,420,800	\$32.48

Natural Breakpoint

^{*}Water Assurance District – costs unknown but assumed to be above the breakpoint line. Only cost is annual cost to purchase the storage.

Preliminary Screening Results

- Conservation considered as a "side item"
- Water Assurance District stays in plan but cannot depend on it for all of water supply
- Acquisition of existing water rights always an option

0

	Preliminary Screening Criteria - # Passing				a	
Alternatives	Optimizes Existing Resources	Increases Reliability during Drought Periods	Minimizes Implementation Risk	Expandable for Future Demands	Cost Effective (above natural breakpoint)	Total # Passing Criteria
Improvements at South Wellfield	4		1	5		
Obtain a seasonal surface water right	3.5		1	4.5		
Improvements at Downtown Wellfield	2.5		1	3.5		
Confluence of Smoky Hill and Solomon Rivers	2.5		1	3.5		
Acquisition of existing water rights	2.5		1	3.5		
Water reuse		2	.5		1	3.5
Milford Reservoir	2		1	3		
Dakota Aquifer	2		1	3		
Saline River	1.5		1	2.5		
Develop a water assurance district	1.5		1	2.5		
Aquifer recharge	1		1	2		
Kanopolis Reservoir	0.5		1	1.5		
Construct a water supply reservoir	1.5		0	1.5		
Wilson Reservoir			1		0	1

Alternatives Evaluation Criteria

Evaluation Criteria (CAB Comments)

- More detailed than preliminary screening criteria
- What is important in comparing alternatives to one another?

- Optimizes existing resources
- Increases reliability during drought
- Minimizes implementation risk (includes public acceptance)
- Expandable for future demand
- Cost effective
- Flexible for phased implementation
- Minimizes environmental impacts
- Desirable water quality
- Permitability
- Sustainability
- Time to Implement

What's Next

- Alternatives Evaluation
 - Evaluate alternatives with respect to 10 criteria
 - Assign 1, 2, or 3 for each criteria
 - 1 is low, 2 is moderate, 3 is high
 - Example South Wellfield ranks high in optimizing existing infrastructure, so give it a 3
 - Each criteria receives a weighting factor
 - Rank alternatives according to evaluation results
 - "Menu of Options"
- Develop capital improvements plan (CIP)
 - Identify water needs according to selected alternatives
 - Identify short-term and long-term projects
- Prepare Draft and Final Reports
- Next City Commission Briefing March 23, 2009

Questions?

